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1. Introduction 

This document describes board level hardware design guidelines for the AM08XX and AM18XX RTC product 
families.  These guidelines should be followed when designing a printed circuit board (PCB) to ensure correct 
circuit operation and best practices for noise immunity and ESD performance. 

2. Schematic and Component Guidelines 

This section contains guidelines that should be followed when designing schematics and selecting PCB 
components. 

2.1 Crystal Oscillator 

The AMX8XX RTC supports standard 32.768 kHz tuning fork crystals.  The 32.768 kHz crystal is directly 
connected between the XO and XI pins.  No external PCB load capacitors are required to tune the crystal 
frequency because the AMX8XX uses digital calibration to calibrate its internal clocks, which corrects any 
deviation errors that occur in the 32.768 kHz crystal oscillator circuit frequency.  Even though no external load 
capacitors should be added to the PCB, there will still be a small amount of capacitive loading.  The total crystal 
load capacitance will come from the following sources. 

1. AMX8XX XO/XI pin capacitance on each leg of the crystal.  This will typically be about 1 pF on each leg. 

2. PCB trace capacitance.  This occurs due to the PCB trace routing between the crystal and AMX8XX 
landing pads and the dielectric separating the ground plane underneath.  This will typically be in the range 
of 0.5 – 2.0 pF, dependent upon the PCB layout. 

3. Capacitance from the crystal and AMX8XX landing pads.  The AMX8XX pin landing pads will be much 
smaller in area than the trace routing and crystal landing pads and so can be ignored in most cases.  The 
capacitance on each leg of the crystal due to its landing pads will typically be in the range of 0.5 – 3.0 pF. 

4. Mutual capacitance between the XO and XI traces that are routed between the AMX8XX and crystal.  
This is typically 1 pF or less. 

Figure 1 below shows the equivalent circuit schematic of the crystal and associated load capacitance attached to 
the AMX8XX RTC XO and XI pins. 

 

                              

Figure 1 – Crystal Circuit Schematic 
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Where: 

CM = mutual capacitance between the XO and XI traces 

CXO = total capacitance on the XO pin leg of the crystal (the sum of the AMX8XX internal XO pin capacitance, 
trace capacitance, and crystal landing pad capacitance) 

CXI = total capacitance on the XI pin leg of the crystal (the sum of the AMX8XX internal XI pin capacitance, trace 
capacitance, and crystal landing pad capacitance) 

CL = total external load capacitance seen by the crystal (series combination of CXO and CXI, plus CM) 

�� =
���∗���

�������

+ ��     Equation 2-1  

The equivalent circuit schematic showing the 4-parameter circuit model for a typical tuning fork crystal including 
the total external load capacitance, CL, is shown in Figure 2. 

 

 

Figure 2 – Crystal Circuit Schematic 

 

Where: 

CO = shunt capacitance of crystal 

R1 = ESR of crystal 

L1 = motion inductance of crystal 

C1 = motion capacitance of crystal 

CL = total external load capacitance given by Equation 2-1 

The motion arm of the crystal is the series combination of C1, L1, and R1.  The static arm of the crystal is CO.  The 
motion arm and static arm component values can typically be found in the crystal datasheet. 

The series resonant frequency of the crystal, Fs, occurs when the reactance/impedance of the motion arm equals 
0 and is given by: 

�� =
�

��	����
     Equation 2-2 

The crystal circuit frequency, FL, at a specific parallel load capacitance, CL, can be derived and is given by: 

�� = ���1 +
��

�����

	 , (�� = 0)    Equation 2-3  
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Figure 3 – Crystal Frequency Deviation vs. Load Cap acitance 

 

 

Even though the crystal oscillator circuit operates at a higher frequency due to the lower crystal load capacitance, 
the AMX8XX XT digital calibration feature allows the internal clocks to be calibrated to within +/- 2 ppm.  The XT 
digital calibration feature has several benefits. 

1. Eliminates the need to trim the crystal oscillator frequency by adjusting the load capacitance, which is 
done in traditional analog solutions. 

2. Any crystal oscillator can be used in the circuit without needing to adjust the load capacitance to tune the 
crystal frequency. The AMX8XX can be digitally calibrated during manufacturing, eliminating any effects 
of frequency shift due to the variation in the load capacitance and crystal impedance. 

3. Reducing the external load capacitance has the added benefit of increasing the oscillation allowance of 
the crystal oscillator circuit, which aids crystal startup and continued oscillation even as the crystal ESR 
increases with temperature. 

2.2 Autocalibration Filter Capacitor 

A 47pF ceramic capacitor should be connected between the AF pin and GND.  The capacitor is necessary to filter 
the AMX8XX analog supply output when operating in RC Autocalibration mode.  A standard 47pF ceramic 
capacitor with a voltage rating of 3.0 V or higher and a tolerance of +/- 20% or less is acceptable. 

2.3 Input and Output Pin Resistors 
The AMX8XX contains no internal pull-up or pull-down resistors on its input or output pins.  Because of this, all 
unused input pins must be terminated with either a pull-up or pull-down resistor.  To reduce external component 
count, they can also be connected directly to either VCC or GND.  Proper termination prevents the voltage on the 
input pin from floating to mid-level, which can result in higher current on the VCC pin.  To prevent addition current 
draw from VCC, the pull-up or pull-down resistor value should be small enough to overcome any leakage currents 
required to pull the voltage on the input pin to within at least 400mV of either VCC or GND.  In addition, the 
voltage level must meet the VIH,MIN and VIL,MAX logic requirements of both the host processor and the AMX8XX 
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RTC.  The total leakage current on the input pin will be the sum of I1 (AMX8XX input pin leakage) and I2 (pin 
leakage of the external peripheral device - MCU / host processor, sensor, switch, etc.) as shown in Figure 1.  
Resistor values between 10 kΩ and 100 kΩ for RPU and RPD are usually acceptable to overcome both sources of 
leakage current.   
 

  
 

 Figure 4 – Pull-up and Pull-down Resistors 
 
Figure 5 shows the typical AMX8XX VCC current change as a function of the input pin voltage both rising above 
GND and falling below VCC = 3.0V. 
 

      

Figure 5 – VCC Current and Input Pin Voltage 

As can be seen in Figure 5, the AMX8XX VCC current will increase rapidly when the input pin voltage is greater 
than 500mV away from either VCC or GND. 

The nRST, PSW/nIRQ2, and FOUT/nIRQ output pins are open drain and therefore require an external pull-up 
resistor to properly create a logic high output.  The pull-up resistor value needs to be small enough to overcome 
the input pin leakage current of the host processor so that the voltage on the pin exceeds the minimum input logic 
high voltage requirement (to guarantee a valid logic high) when the AMX8XX output pin is high impedance.  

2.4 VCC Supply Bypass Capacitors 

A capacitor should be used to bypass the AMX8XX VCC supply.  The capacitor provides a local source near to 
the VCC pin to provide instantaneous current to the AMX8XX during switching conditions.  This is particularly 
important when an output pin switches high (to the VCC rail) and must drive pin and PCB trace capacitance.  
Because the AMX8XX current consumption is extremely low and has a small number of output pins that all 
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operate at relatively low frequencies, a small ceramic capacitor, 0.1 µF, can be used to bypass the VCC supply.  If 
additional VCC capacitance is required due to other system components, care should be taken to keep the total 
capacitor leakage current as low as possible. 

When the AMX8XX RTC is running with currents of only tens of nanoamps, one important factor that can be 
easily overlooked is the capacitor leakage current or insulation resistance.  The leakage current of large value 
capacitors can exceed the AMX8XX operating current in some cases.  An equivalent low frequency circuit model 
(not including inductive effects) for a ceramic capacitor is shown below in Figure 6. 

 

RINS

C

RESR

ILEAK

 

Figure 6 – Low Frequency Capacitor Model 
 
Where: 

RESR = equivalent series resistance (ESR) 

RINS = insulation resistance 

ILEAK = leakage current due to insulation resistance 

C = capacitance value 

A ceramic capacitor ESR is typically under 0.1 ohms.  In some cases, the capacitor ESR must be taken into 
consideration when dealing with very high peak currents and the resulting voltage drop across RESR.  However, 
due to the ultra-low current consumption of the AMX8XX, RESR can be ignored. 

The insulation resistance of a ceramic capacitor represents the ratio between the applied voltage and the leakage 
current after a set period of time.  In ceramic capacitor datasheets, this is usually specified in megohms (MΩ) or 
ohm-farads (Ω-F) and tested at the rated voltage after 1-2 minutes. 

Immediately after a DC voltage is applied to the capacitor, an inrush (charge) current will occur.  The absorption 
current occurs due to the dielectric loss of the capacitor and decreases exponentially with time.  The leakage 
current is then measured as the constant current flowing through the capacitor after the absorption current has 
decreased to an acceptable level. 
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Figure 7 – Ceramic Capacitor Current Profile 

As can be seen in the ceramic capacitor current profile curve in Figure 7, to properly specify the insulation 
resistance or leakage current, the timing of the measurement after the applied voltage (at time = 0) must also be 
specified. 

Ambiq Micro has tested the leakage currents of large value ceramic capacitors ranging from 10-100µF.  Table 2 
shows typical leakage currents of the capacitors 10 minutes after applying 3.3V across the capacitor terminals at 
room temperature. 

Capacitor 
Value (µF) 

Package  
Case Code 

Size (mm) 
(LxWxH) 

Leakage 
Current (nA) 

100 1206 3.2x1.6x1.6 11 

47 0805 2.0x1.25x.95 5.5 

22 0603 1.6x0.8x0.8 2.6 

10 0402 1.0x0.5x0.7 1.1 

Table 2 – Ceramic Capacitor Leakage Currents 
 
The ceramic capacitor leakage currents may be slightly different than those in Table 2 dependent upon the 
manufacturer and product variation.  Notice that the leakage current of a typical 100 µF ceramic capacitor will be 
approximately equivalent to the AMX8XX operating current in RC oscillator mode.  Lower leakage capacitors can 
also be obtained with tradeoffs between cost and size.  The ceramic capacitor manufacturer should be consulted 
for insulation resistance specifications and system testing performed to determine the system specific leakage 
current.  Because a ceramic capacitor with a value of 0.1 µF can be used to bypass the AMX8XX supply, the 
leakage current of the bypass capacitor is typically insignificant. 

2.5 VBAT Supply ESR 

For VBAT switchover applications, a back-up supply (capacitor, supercapacitor, coin-cell battery, etc.) is attached 
to the VBAT pin of the AMX8XX.  When the VCC supply is removed, the AMX8XX will automatically switch over 
to the back-up supply on the VBAT pin.  To ensure correct switchover to the back-up supply under all operating 
conditions, the total series resistance (ESR) of the back-up supply should nominally be 1.5 kohms (1.0 kohms 
minimum).  Most back-up supplies have an ESR that is much lower than this, which will require an external 
resistor, R10, in series with the VBAT back-up supply as shown in the reference schematics in section 2.6. 

2.6 Reference Schematics 

Figure 8 and Figure 9 show reference schematics for the AMX8XX family superset parts, the AM1805 (I2C) and 
AM1815 (SPI).  Note that some of the pins will be no-connect (NC) dependent upon the AMX8XX product family 
member used in the design.  No-connect pins do not require pull-up resistors and should remain floating. 
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Figure 8 – I 2C Reference Schematic 

 

Figure 9 – SPI Reference Schematic 
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3. Layout Guidelines 

This section contains guidelines that should be followed when designing a PCB layout to support the AMX8XX.  
Topics include component placement, trace routing, ground and power planes, PCB stack-up, and a reference 
layout. 

3.1 Checklist 

Below is a checklist of important layout guidelines that should be followed when incorporating the AMX8XX into a 
PCB design.  

1. The 32.768 kHz crystal should be placed as close as possible to the XO/XI pins.  Although not required, if 
pads for external load capacitors are placed on the board, they should also be placed as close as 
possible to the crystal and XO/XI pins to maintain a tight crystal oscillator circuit layout. 

2. It is extremely important that a solid ground plane be placed under the entire crystal oscillator circuit.  This 
includes the crystal component and its associated PCB landing pads, the AMX8XX XO and XI pin PCB 
landing pads, and the entire trace route between the two components.  No other traces should be routed 
underneath the crystal oscillator circuit.  A solid ground plane will aid in shielding the crystal oscillator 
circuit, which will improve the ESD performance, prevent coupling from nearby traces, and make the 
circuit less susceptible to electromagnetic interference (EMI). 

3. The AMX8XX QFN package thermal pad should be connected directly to the sold ground plane.  This 
creates a low impedance GND connection between the AMX8XX and PCB ground plane and also 
provides additional shielding of the die. 

4. A supply bypass capacitor should be placed as close as possible to the AMX8XX VCC pin.  Selection of 
the bypass capacitor and total VCC capacitance should be carefully considered as described in section 
2.4.  The supply bypass capacitor also helps to stabilize the VCC rail during high current or voltage 
transients that can occur in an ESD event. 

5. The 47pF filter capacitor must be placed as close as possible to the AF pin (16-QFN package pin 14) of 
the AMX8XX.  This capacitor filters the internal analog supply when operating in autocalibration mode.  
Because the AF pin is a high impedance output, a solid ground plane should be placed underneath this 
capacitor and associated PCB trace routing to provide shielding and prevent coupling from nearby traces 
on the board. 

3.2 PCB Layer Stack-up and Planes 
To make it easier to implement the crystal circuit and AF filter capacitor ground plane shielding guidelines in 
section 3.1, the PCB layer stack ups below are recommended.  It will also help to improve the EMI and ESD 
performance of the system.  The key aspect of each layer stack-up is that a solid ground plane is placed 
underneath the AMX8XX RTC. 
 
2 Layer PCB Stack-up: 
 

 
 
4 Layer PCB Stack-up: 
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6 Layer PCB Stack-up: 
 

 

3.3 Reference Layout 
The recommended 2 layer PCB layout using the AM1805 I2C reference schematics from section 2.6 is shown in 
Figure 10 below.  All components are placed on the top layer (show in blue color).  On the bottom layer (shown in 
gray color) a thick VCC trace is used to connect power to the AM1805 VCC pin and the I/O pin pull-up resistors.  
The key item to follow from the reference layout below is that a solid ground place is placed underneath the entire 
crystal circuit, AF pin filter capacitor circuit, and the AM1805 RTC.  The VCC trace and other PCB routing should 
avoid these areas. 

 

Figure 10 – AM1805 Reference Layout 
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