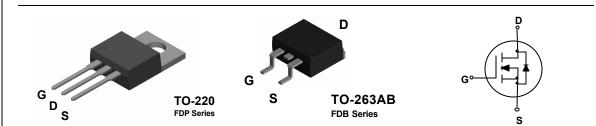
March 2000

FDP5645/FDB5645 60V N-Channel PowerTrench® MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{DS(ON)}$ specifications.

The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

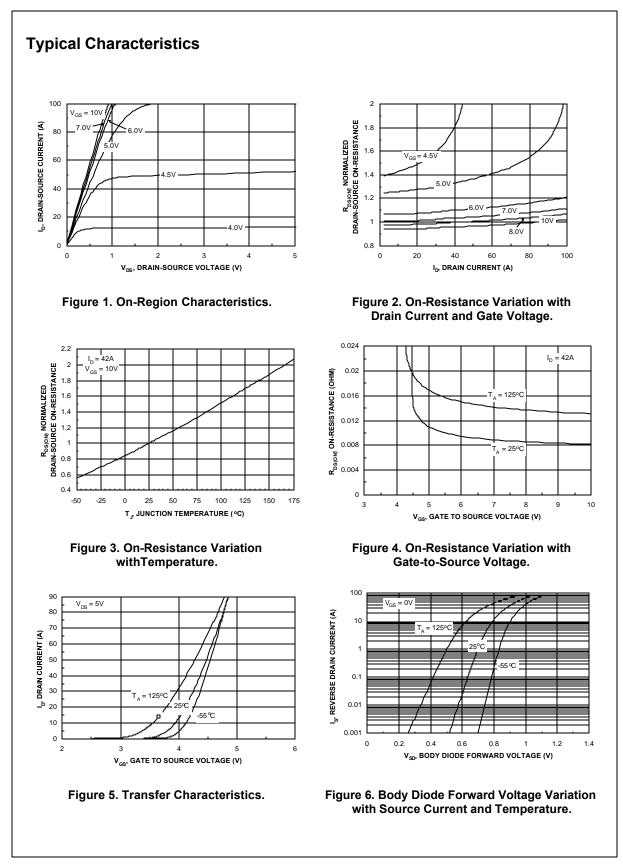
Features

- 80 A, 60 V. $R_{\rm DS(ON)} = 0.0095 \ \Omega \ @ V_{\rm GS} = 10 \ V$ $R_{DS(ON)} = 0.011 \ \Omega @ V_{GS} = 6 \ V.$
- · Critical DC electrical parameters specified at elevated temperature.
- Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
- High performance trench technology for extremely low R_{DS(ON)}.
- 175°C maximum junction temperature rating.

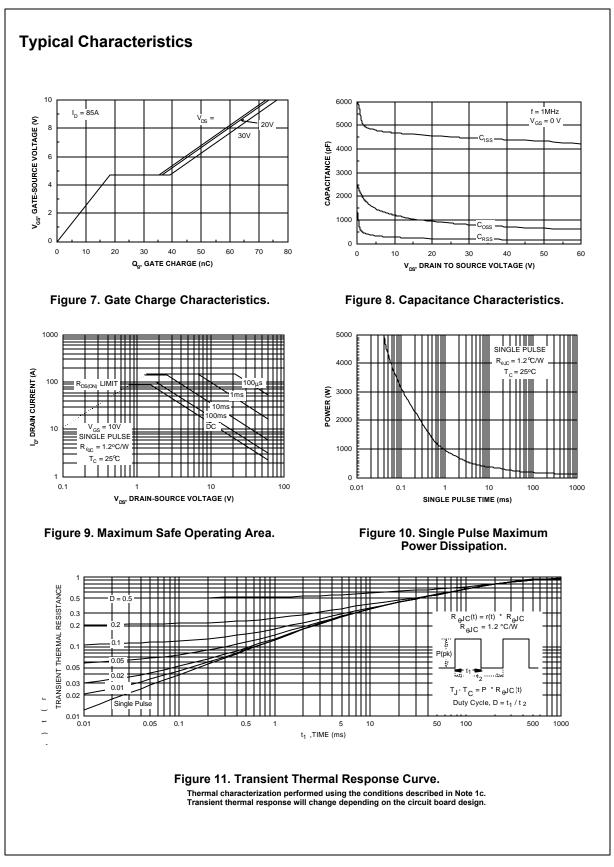
Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter	FDP5645 FDB5645	Units
V _{DSS}	Drain-Source Voltage	60	V
V _{GSS}	Gate-Source Voltage	±20	V
l _D	Maximum Drain Current – Continuous (note 3)	80	Α
	– Pulsed	300	
PD	Total Power Dissipation @ $T_c = 25^{\circ}C$	125	W
	Derate above 25°C	0.83	W/°C
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-65 to +175	°C
TL	Maximum lead termperature for soldering purposes, 1/8" from case for 5 seconds	+275	°C
Therma	I Characteristics		
R _{0JC}	Thermal Resistance, Junction-to-Case	1.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

 $R_{\theta JA}$ Thermal Resistance, Junction-to-Ambient

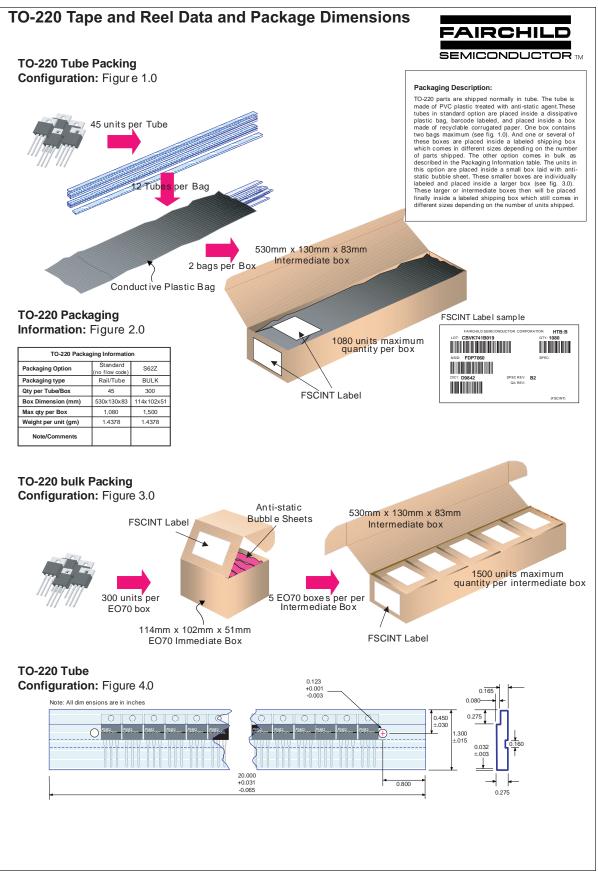

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDB5645	FDB5645	13"	24mm	800 units
FDP5645	FDP5645	note 2		

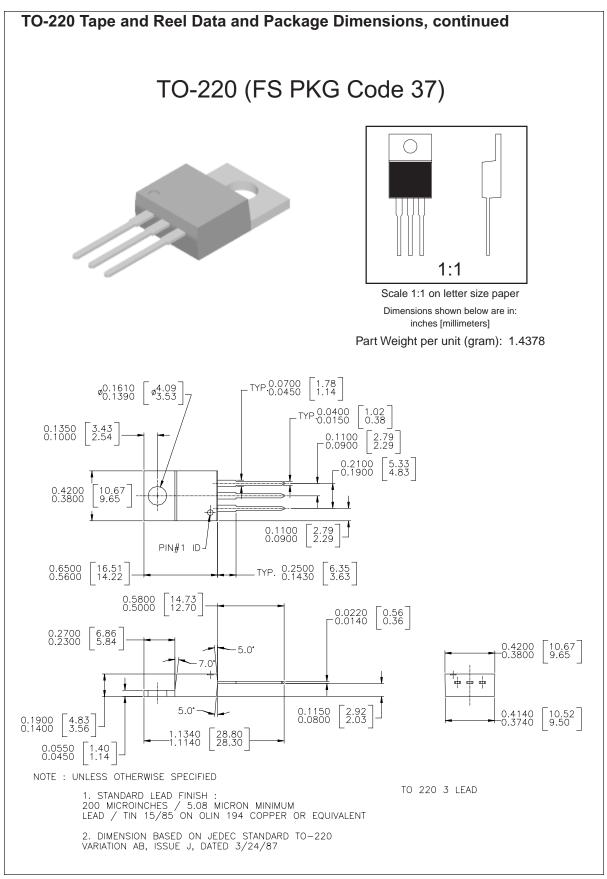

© 2000 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	burce Avalanche Ratings (Note ?	1)				
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 40 \text{ V}, I_D = 80 \text{ A}$			800	mJ
lar	Maximum Drain-Source Avalanche Current				80	A
Off Chai	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	60	[V
<u>ΔBV dss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		64		mV/ºC
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 48 V$, $V_{GS} = 0 V$			1	μΑ
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate–Body Leakage, Reverse	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			-100	nA
	acteristics (Note 1)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	-	4	V
<u>ΔVgs(th</u>) ΔTj	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-7.8		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$\begin{array}{ c c c c c c c c } V_{GS} = 10 \ V, & l_D = 40 \ A \\ V_{GS} = 10 V, & l_D = 40 \ A, \ T_J = 125^\circ C \\ V_{GS} = 6 \ V, & l_D = 38 \ A \end{array}$		8 13 9	9.5 18 11	mΩ
D(on)	On–State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 10 \text{ V}$	60			Α
g fs	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 40 A$		88		S
Dynamio	Characteristics	•				
Ciss	Input Capacitance	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		4468	1	pF
	Output Capacitance			810		pF
C _{rss}	Reverse Transfer Capacitance			198		pF
	ng Characteristics (Note 2)					μ.
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 30 V$, $I_D = 1 A$,		21	30	ns
t _r	Turn-On Rise Time	$V_{GS} = 30 V$, $I_D = 1 A$, $V_{GS} = 10 V$, $R_{GEN} = 6 \Omega$		13	20	ns
t _{d(off)}	Turn-Off Delay Time			77	90	ns
t _f	Turn–Off Fall Time	_		42	50	ns
Qg	Total Gate Charge	$V_{DS} = 30 \text{ V}.$ $l_D = 80 \text{ A}.$		76	107	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = 30 V$, $I_D = 80 A$, $V_{GS} = 10 V$		18	107	nC
	5	-		21		
Q _{gd}	Gate–Drain Charge			21		nC
Drain-S	ource Diode Characteristics					
ls I-	Maximum Continuous Drain-Source			l T	80	A
	Drain–Source Diode Forward	$V_{GS} = 0 V$, $I_S = 40 A$		0.9	1.3	V
Is V _{SD} otes: Pulse Test: Pu	Maximum Pulsed Drain-Source Dioc	le Forward Current		0.9	300	

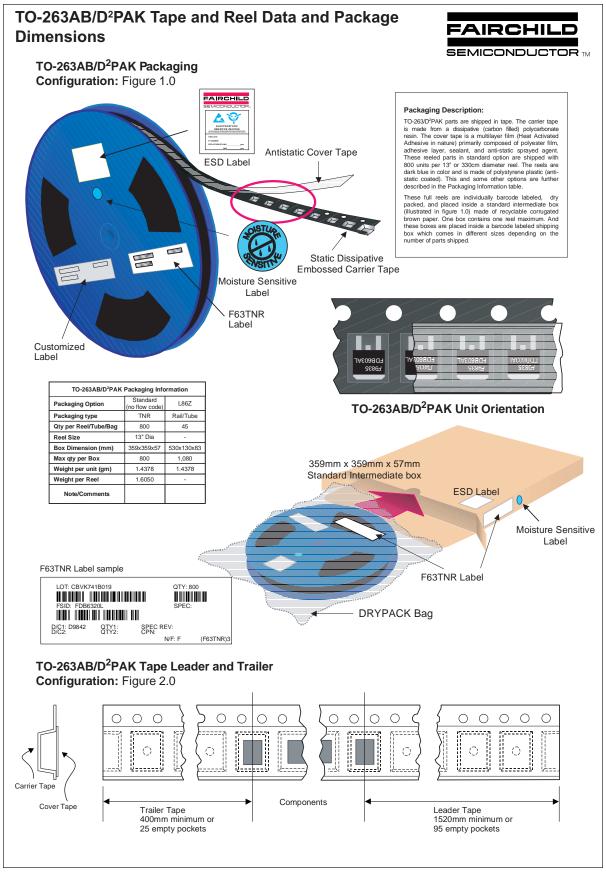
FDP5645/FDB5645



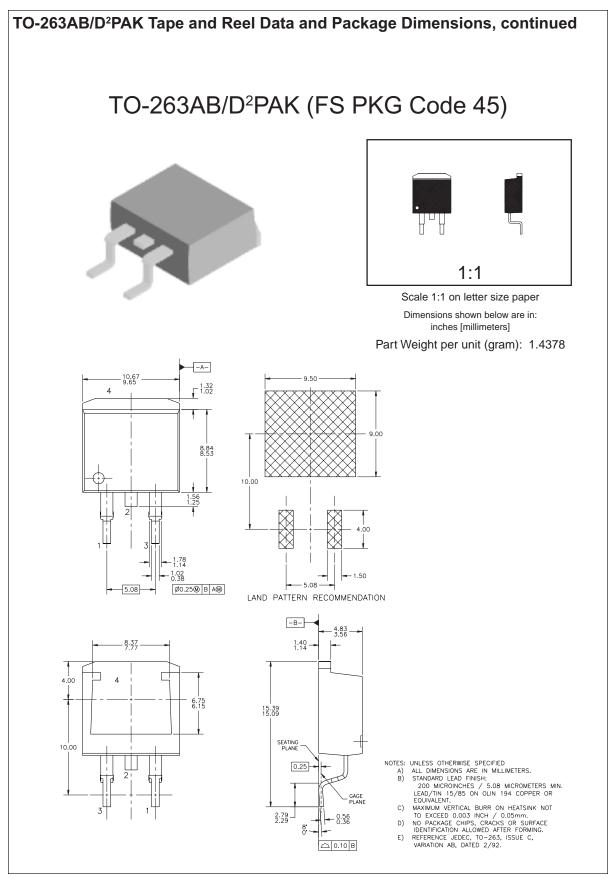
FDP5645/FDB5645



FDP5645/FDB5645


FDP5645/FDB5645 Rev. B (W)


August 1999, Rev. B



September 1998, Rev. A

September 1999, Rev. B

August 1998, Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.